how do you find the area of a triangle

2 hours ago 3
Nature

To find the area of a triangle , you can use the most common formula:

Area of a Triangle Formula

Area=12×base×height\text{Area}=\frac{1}{2}\times \text{base}\times \text{height}Area=21​×base×height

Steps:

  1. Identify the base of the triangle (any one side).
  2. Measure the height (the perpendicular distance from the base to the opposite vertex).
  3. Plug these values into the formula and calculate.

Example:

If the base is 6 units and the height is 4 units:

Area=12×6×4=12 square units\text{Area}=\frac{1}{2}\times 6\times 4=12\text{ square units}Area=21​×6×4=12 square units

Other methods:

  • Using Heron's formula (when you know all three sides):

s=a+b+c2s=\frac{a+b+c}{2}s=2a+b+c​

Area=s(s−a)(s−b)(s−c)\text{Area}=\sqrt{s(s-a)(s-b)(s-c)}Area=s(s−a)(s−b)(s−c)​

where a,b,ca,b,ca,b,c are the side lengths and sss is the semi-perimeter.

  • Using coordinates (if you know the vertices (x1,y1),(x2,y2),(x3,y3)(x_1,y_1),(x_2,y_2),(x_3,y_3)(x1​,y1​),(x2​,y2​),(x3​,y3​)):

Area=12∣x1(y2−y3)+x2(y3−y1)+x3(y1−y2)∣\text{Area}=\frac{1}{2}\left|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\right|Area=21​∣x1​(y2​−y3​)+x2​(y3​−y1​)+x3​(y1​−y2​)∣

If you want, I can help you with a specific example!