Multiplying Fractions with Whole Numbers
Multiplying fractions by whole numbers is a simple process. Here’s a step-by- step guide to help you understand and perform this operation easily.
Step 1: Understand the Problem
When you multiply a fraction by a whole number, you are essentially adding the fraction to itself multiple times. For example:
- 34×2\frac{3}{4}\times 243×2 means 34+34\frac{3}{4}+\frac{3}{4}43+43.
Step 2: Convert the Whole Number to a Fraction
Write the whole number as a fraction by placing it over 1:
- 2=212=\frac{2}{1}2=12
Step 3: Multiply the Numerators and Denominators
Multiply the numerators (top numbers) together and the denominators (bottom numbers) together:
34×21=3×24×1=64\frac{3}{4}\times \frac{2}{1}=\frac{3\times 2}{4\times 1}=\frac{6}{4}43×12=4×13×2=46
Step 4: Simplify the Fraction (if possible)
Simplify 64\frac{6}{4}46 by dividing numerator and denominator by their greatest common divisor (GCD), which is 2:
6÷24÷2=32\frac{6\div 2}{4\div 2}=\frac{3}{2}4÷26÷2=23
Step 5: Convert to Mixed Number (optional)
Since 32\frac{3}{2}23 is an improper fraction (numerator > denominator), you can write it as a mixed number:
32=112\frac{3}{2}=1\frac{1}{2}23=121
Summary
Step| Action| Example
---|---|---
1| Convert whole number to fraction| 2=212=\frac{2}{1}2=12
2| Multiply numerators| 3×2=63\times 2=63×2=6
3| Multiply denominators| 4×1=44\times 1=44×1=4
4| Simplify the fraction| 64=32\frac{6}{4}=\frac{3}{2}46=23
5| Convert to mixed number (optional)| 32=112\frac{3}{2}=1\frac{1}{2}23=121
If you want, I can provide more examples or practice problems!